Seasonal Temperature and Precipitation Biases in WRF as a Result of CCSM Forcing Data

Ripley McCoy¹, Jiming Jin, Simon Wang, Chuck Hawkins, David Tarboton ¹Utah State University

Purpose

- Improve regional climate simulations for the western United States
- Provide monthly temperature and precipitation data to drive hydrologic models
- Identify biases in forcing data; quantify and find causes

Domain

- 110 X 110 Grid
- 32 km Spacing
- Lambert Projection

WRF Model	Version 3.2
Microphysics	Goddard
Cumulus	New Grell
PBL	MYNN 2.5
Shortwave Radiation	CAM
Longwave Radiation	CAM
Land Surface	Coupled CLM v3.5*
Forcing Data	NCEP/NCAR Reanalysis (WRFncep), CCSM 20 th Century (WRFccsm)

Why CLM?

PRISM Obs

WRF with Noah Original Land Surface Model

53

-6

 $^{-2}$

2

6

10

14

18

-10

University of Delaware

Dec. 1999

From AGU Fall Meeting 2010

Why CLM?

PRISM Obs

WRF with Noah Original Land Surface Model

83

-6

 $^{-2}$

2

6

-10

University of Delaware

WRF with coupled Community Land Model version 3.5

Dec. 1999

From AGU Fall Meeting 2010

DJF Monthly Precip (mm); years 1989 – 1999

DJF Monthly Temp (°C); years 1989 – 1999

WRFccsm – WRFncep DJF 1990 – 1999

700mb Wind (m s-1)/Q(kg kg-1)

700mb W (m s-1)

WRFccsm – WRFncep DJF 1990 – 1999

SST (K)

-2 - 1.6 - 1.2 - 0.8 - 0.4 0 0.4 0.8 1.2 1.6 2

QFX (kg m-2 s-1)

July Precip (mm); years 1989 - 1999

July Temp (°C); years 1989 – 1999

July 1990 - 1999 700mb Streamlines

NCEP

July 1990 - 1999 700mb Geopotential Height

NCEP

WRFncep

30° 302° 30° 30° 310° 312° 315° 31° 320° 32°

WRFccsm

WRFccsm – WRFncep July1990 – 1999

SKINTEMP (K)

Wind (m s-1)/Q (kg kg-1)

CCSM Forcing Data Correction

WRF forced

with NCEP

University of Delaware Obs

WRF forced with original CCSM

WRF forced with regressed CCSM

July Precip (mm); years 1989 - 1999

Future Work

- Sensitivity testing to reduce biases in July precipitation for NCEP forced simulation, check regression method
- (Forcing) Data consistency?

Conclusions

- Forcing with CCSM data leads to cold, wet biases across higher elevations during the cold season
- NCEP forcing performs well during cold season, but leads to overestimation of summer monsoon precipitation
- Biases in CCSM forcing can be reduced by bias correcting the input data

Acknowledgements

- Cluster time and other computer resources from the Center for High Performance Computing at Utah State University are gratefully acknowledged.
- This work was supported by the EPA grant No. RD83418601